Family • Araceae - Alocasia macrorrhiza (L.) Schott - ELEPHANT EAR - Jia hai yu

Scientific names

Alocasia macrorrhiza (L.) Schott
Alocasia cucullata (Lour.) Schott
Alocasia macrorrhizos (L.) G. Don
Alocasia indica Naves.
Arum macrorrhizon Linn.
Calla maxima Blanco
Arum grandifolium Blanco
Calla badian Blanco
Jian wei yu (Chin.)

Other vernacular names

CHINESE: Lao hu yu, Gu po yu, Gou shen yu, Zhu bu gong, Du zu lian, Jia hai yu, Lao hu er.
HAWAII: Ape keoke, Apii.
INDIA: Maanaka, Maana, Maankandan, Kassalu, Hastikami, Kerukan kizhangu.
INDONESIA: Ababa, Biah, Bira, Sente, Wia, Mae, Mael, Makata, Mira, Wire, Wir.
MALAYSIA: Birah hiram.
VIETNAM: Ray cay.

Common names

Aba (Ibn.)
Aba-aba (Ig.)
Badiang (Tag., Bis.)
Bagiang (Bis.)
Bira (Ilk.)
Biga (Tag., Ilk., Bis., Pamp.)
Bilbila (Bon.)
Gabi (Bik.)
Galiang (Bis.)
Gandus (Pamp.)
Malabiga (Tag.)
Ragiang (Bis.)
Sininaba (Ilk.)
Talipan (Bik.)
Taliang (Bis.)
Giant elephant ear (Engl.)
Giant taro (Engl.)
Large taro (Engl.)
Roasting coco (Eng.)
Jia hai yu (Chin.)



Biga is a coarse and erect plant with a stout trunk, growing up to 2 meters high. Leaves are very large, broadly ovate, the larger ones up to 1.5 meters long, with slightly undulate margins, a pointed apex and a deeply cordate base, not at all peltate. Petioles are long and very stout. Spathes are peduncled, with the tube 4 to 5 centimeters long, the blade yellowish to yellowish-green up to 23 centimeters long and 9 centimeters wide when spread, slightly mottled with purple inside. Pistillate part of the spadix is 3 to 4 centimeters long, 1.5 centimeters thick, contracted above. Fertile part of the male inflorescence is about 6 centimeters long, the appendage about 15 centimeters long. Berries are globose or ovoid, fleshy, and red when mature.

Additional Sources and Suggested Readings

(1) Neurotoxicity following the ingestion of a Chinese medicinal plant, Alocasia macrorrhiza / Chan T Y K et al / Human & experimental toxicology ISSN 0960-/1995, vol. 14, no 9, pp. 737-773 (8 ref.), pp. 727-7283271

(2) Sorting Alocasia names / Multilingual Multiscript Plant Name Database

(3) Effect Of Alocasia Macrorrhiza Extract On Hepatorenal Functions In Mice / Eman Gamal El-Deen Helal, Samia M. Abd El-Wahab et al /

(4) Calcium oxalate is the main toxic component in clinical presentations of alocasis macrorrhiza (L) Schott and Endl poisonings / Lin TJ, Hung DZ et al / Vet Hum Toxicol. 1998 Apr;40(2):93-5.

(5) Alocasia macrorrhiza / Vernacular names / GLOBinMED

(6) Giant taro leaves (Alocasia macrorrhiza) for replacement of soybean meal in diets for Mong Cai sows in Central Vietnam / Hoang Nghia Duyet / Livestock Research for Rural Development 22

(7) Laxative and Diuretic Propertie of Ethanolic Extract of Leaves of Alocasia macrorrhia Linn. on Experimental Albino Rats / Uddin Sheikh Mubeen, Misra Vimlesh, Banerjee Santanu / International Research Pharmacy, 2012, 3(2).

(8) In vitro Protection of Hepatocyts by Alocasia macrorrhiza Leaf Juice Against CCl4 and Tylenol Mediated Hepatic Injury / Bhagyashree Patil, Sanjeevani Bamane, Ujwala Khadsare / International Journal of Pharmaceutical Applications, Vol 2, Issue 2, 2011, pp 122-127.

(9) Anticancer potential of aqueous extract of alocasia macrorrhiza against hepatic cancer in vitro and in vivo./
Fang S, Lin C, Zhang Q, Wang L, Lin P, Zhang J, Wang X. / J Ethnopharmacol. 2012 Jun 14;141(3):947-56. doi: 10.1016/j.jep.2012.03.037. Epub 2012 Mar 28.

(10) Antihyperglycemic, antioxidant, and cytotoxic activities of Alocasia macrorrhizos (L.) rhizome extract /
Md. Masudur RAHMAN, Md. Aslam HOSSAIN, Saiful Alam SIDDIQUE, Kaishar Parvej BIPLAB, Md. Helal UDDIN / Turk J Biol 36 (2012) 574-579

– Wild in clearings and secondary forests at low and medium altitudes throughout the Philippines.
– Commonly cultivated as an ornamental here and in other tropical countries.
– Also occurs in India to Malaya.

– Plant yields flavonoids, cynogenetic glycosides, ascorbic acid, gallic acid, mallic acid, oxalic acid, alocasin, amino acids, succinic acid, and ß-lectins.
– Rhizomes contain phytosterols, alkaloids, glucose and fructose.
– Root tuber contains neurotoxin, sapotoxin.
– Study has yielded alocasin, an antifungal and trypsin inhibitor.
– Study isolated a new ceramide, alomacrorrhiza A, from an ethanolic extract.
– Stems, corms, leaves and petioles contains numerous, needlelike, stinging crystals of calcium oxalate (raphides).

– Leaf considered astringent, styptic, antitumor.
– Rootstock considered laxative, diuretic.
– Experimentally considered antimicrobial, antifungal, antioxidant, hepatoprotective, antidiarrheal, antiprotozoal, anticancer.

Parts used
Stems, leave, rhizomes.

Edibility / Nutritional
– Stems and corms are edible; used as food during scarce times.
– Widely cultivated and eaten as vegetable throughout Bangladesh.
• Leaves and corms used for furuncles, impetigo and snake bites
• Ground petioles in near-decayed state are placed in cloth and heated in coals, used for toothaches.
• Decoction of rhizomes used for abdominal pains and vomiting.
• Acrid juice used for stings of giant nettles (Laportea).
• Tubers used for influenza, fever, malaria, diarrhea, typhoid fever, tuberculosis, headaches.
• Rootstock used for inflammations and diseases of the abdomen and spleen.
• Leaf and stem decoction used as bath in treatment of pruritic skin conditions and burns.
• Underground stem part used for gout and rheumatism.
• In Bangladesh, used in the treatment of diabetes; stem juice applied to prevent edema, pain, and bleeding from cuts and wounds. Whole plant is used for pus in the ears, jaundice, and constipation.
• In Java, chopped roots and leaves applied to painful joints.
• In India, rhizomes are rubefacient; employed as external stimulant and for fevers.
• In Vietnam used to treat inflammation, eczema and abscesses.
• Feed: and

Study Findings
• Antifungal / Anti-HIV1 Reverse Transcriptase: Alocasin, an anti-fungal protein was isolated from the rhizome of Alocasia macrorrhiza. and showed antifungal activity against Botrytis cineria. Alocasin also reduced the activity of HIV1 reverse transcriptase.
• Neurotoxicity / Sapotoxin: A case report of poisoning due to the raw root tuber of Chinese medicinal plant, A macrorrhiza, presenting with severe pain and numbness periorally, with nausea, vomiting and abdominal pain. Root tuber is known to contain the neurotoxin, sapotoxin.
• Anti-Tumor: In a study of the antitumor effect of water extract of Alocasia macrorrhiza, the inhibitory rate was 29.38% against S180 in mice and 51.72% against transplantable human gastroadenitis in nude mice.
• Hepatorenal Effects / Concerns: Plant extract was studied for effects on hepatorenal functions in mice. After treatment, RBC, Hb, protein, albumin and globulin were significantly decreased while AST, ALT, GGT, LDH,creatinine, total lipid and cholesterol were significantly increased after treatment and recovery period of 10 days. Histopath changes noted after treatment disappeared after a recovery period of 20 days. However, vascular congestion persisted. The high LD50 of the reversible action of the plant require more studies before recommendations are made regarding its safety as a medicinal plant.
• Alternative to Soybean Meals for Sows: A study in Vietnam evaluated the benefits of growing Taro for feeding sows. Results showed that even on low-fertility soil the yields of foliage and roots were high (200 and 20 tonnes/ha fresh basis, respectively in 200 days, estimated at 100 million VND (about US$ 5,000)/ha, almost five times more than from rice. The boiled leaves replaced 50% or all of the protein from soybean meals in diets based on rice bran and broken rice. Results concluded Giant Taro can be a complete replacement for soybean meal in the diets of Mong Cai sows.
• Diuretic / Laxative: Study evaluated the laxative and diuretic effect of leaves extract in rats. An ethanolic extract produced significant dose-dependent laxative and diuretic activities.
• Hepatoprotetive / Antioxidative / In Vitro Study: Study evaluated the antioxidative and hepatoprotective property of A. macrorrhiza leaf juice. Results from TBARS and Glutathione assays conclude the leaf juice as a whole possesses hepatoprotective and antioxidative properties when tested in vitro using rat liver slice model with hepatic damage induced by CCl4 and Tylenol.
• Anti-Cancer Potential: Study showed Alocasia macrorrhiza extract has potential cytotoxic and apoptotic effect on human hepatocellular carcinoma cells and inhibits hepatoma growth in vitro. Mechanisms might be associated with inhibition of DNA synthesis, cell cycle arrest, and apoptosis induction.
• Larvicidal / Pupicidal: Study evaluated the larvicidal and pupicidal potential of methanolic extracts of plant leaves against malarial vector Anopheles stephensi mosquitoes. Results showed the plant leaf extracts to be effective mosquito vector control agents with a potential for use in integrated pest management programs.
• Antihyperglycemic / Antioxidant / Cytotoxic: Study evaluated a methanolic extract for antihyperglycemic, antioxidant, and cytotoxic effects. In alloxan-induced hyperglycemic mice, it produced a significant decrease in blood glucose levels (<P.0.05). Extract also showed antioxidant potential and cytotoxic effects on brine shrimp lethality assays.

Caution / Toxicity
• Stinging Raphides: Stems, corms, leaves and petioles contain stinging raphides (calcium oxalate crystals) that are destroyed by boiling and roasting.
• Neurotoxicity: Case report possibly caused by tuber root neurotoxin, sapotoxin.
• Retrospective study: Retrospective study on A. macrorrhiza poisonings of 27 cases (25 leaf or tuber consumption, 1 eye contact, 1 skin contact) suggests sapotoxin and calcium oxalate as the toxic components. Primary symptom was sore throat redness with numbness of the oral cavity. Other complaints were salivation, dysphonia, abdominal pain, mouth cavity ulcers, dysphagia, thoracodynia. chest tightness and swollen lips.