Family • Asteraceae - Spilanthes acmella (Linn.) Murr. - TOOTHACHE PLANT - Hong xi shui cao

Scientific names

Acmella paniculata (Wall. ex DC.) R. K. Jansen
Blainvillea acmella (L.) Philipson
Bidens acmella (L.) Lam.
Spilanthes acmella (Linn.) Murr.
Spilanthes lobata Blanco
Spilanthes paniculata Wall. ex DC.
Verbesina acmella Linn.
Jin niu kou (Chin.)

Common names

Biri (Ig.)
Dila-dilag (If.)
Gatang-gatang (Sul.)
Pilet-pilet (Sul.)
Toothache plant (Engl.)
Spot flower (Engl.)
Hong xi shui cao (Chin.)

Other vernacular names

CHINESE: San lu cao, Xiao tong chui, Tian wen cao, Bian di hong, Huang hua cao, Guo hai long
INDIA: Akarkara.
INDONESIA: Jotang, jocong, daun getang.
JAPANESE: Supirentesu panikurata.
LAOS: Kh’aad.
MALAYSIA: Subang nenek.
NEPALESE: Laato ghaans, Maaratii.
THAI: Raan.


Biri is an erect, branched, annual herb which reaches a height of 15 to 60 centimeters. Leaves are opposite, smooth or nearly so, ovate or ovate-lanceolate, and 1.5 to 3 centimeters long, with pointed tip and wedge-shaped base, and with toothed or wavy margins. Conical heads occur singly at the ends of long stalks, and are about 1 centimeter in length. Flowers are yellow. Achenes are flattened, oblong, dark-brown and enclosed separately in scales.

– In open waste places, old clearings, etc., at low and medium altitudes.
– In Benguet Subprovince, Cagayan, Nueva Viscaya, Rizal, and Laguna Provinces in Luzon, and in Mindoro and Balabac.
– Pantropic in distribution.


– Study has isolated an active principle, spilanthol (C14H25NO), an isobutylamide, a known insecticidal.
– Leaves yield alkaloids, carotenoids, essential oils, sesquiterpenes, amino acids.
– Phytochemical analysis of leaves yielded alkamides (spilanthol), isobutylamide derivatives, a- and ß-amyrin esters, stigmasterol, triterpenoidal saponins, amino acids, and alkaloids.
– Study isolated bioactive compounds: phenolics (vanillic acid, trans-ferulic acid, and trans-isoferulic acid), coumarin (scopoletin), and triterpenoids like 3-acetylaleuritolic acid, β-sitostenone, stigmasterol and stigmasteryl-3-O-β-D-glucopyranosides.


– Adaptogenic, antibacterial, antiinflammatory, antiscorbutic, digestive, diuretic, immunomodulatory, insecticidal,larvicidal, lithotriptic, sialogenic, tonic.
– Saliva-inducing and trigeminal effects attributed to spilanthol.

Parts used
Roots, leaves, leaf juice.

– In some Asian countries, used as spice.
– Flower heads used by Japanese as spice for appetizers.

Additional Sources and Suggested Readings


(2) Preliminary studies on antiinflammatory and analgesic activities of Spilanthes acmella in experimental animal models / A Chakraborty, R KB Devi et al / RESEARCH PAPER, 2004, Vol 36, Issue 3, Pp : 148-150

(3) Study of immunomodulatory activity of ethanolic extract of Spilanthes acmella Murr. leaves / RV Savadi, R Yadav, and N Yadav / Indian Jour of Natural Products and Resources, Vol 1(2) June 2010, pp 204-207


(4) Analgesic Activity of Water Extract of Spilanthes acmella Flowers on Rats / K.P.R Peiris AndG.KJ. Silva, W.D. Ratnasooriya / J. Trop. Med. Plants. Vol 2 No. 2 (Dec 2001)


(6) Preliminary studies on local anesthetic and antipyretic activities of Spilanthes acmella Murr. in experimental animal models / A. Chakraborty, B.R.K. Devi, […], and I.S. Thokchom / Indian J Pharmacology, Oct 2010, 42(5):277-279

(7) HIGH THERAPEUTIC POTENTIAL OF SPILANTHES ACMELLA: A REVIEW / Veda Prachayasittikul, Supaluk Prachayasittikul*,Somsak Ruchirawat, Virapong Prachayasittikul* / EXCLI Journal 2013;12:291-312

(8) Insecticidal Toxicity of Spilanthol from Spilanthes acmella Murr. against Plutella xylostella L. / Anuradha Sharma, Vishal Kumar, Rameshwar Singh Rattan, Neeraj Kumar, Bikram Singh* American Journal of Plant Sciences, 2012, 3, 1568-1572

(9) Bioactive Metabolites from Spilanthes acmella Murr. / Supaluk Prachayasittikul*, Saowapa Suphapong, Apilak Worachartcheewan , Ratana Lawung, Somsak Ruchirawat and Virapong Prachayasittikul* / Molecules 2009, 14, 850-867; doi:10.3390/molecules14020850

(10) Determination of Antioxidant Potential in Spilanthes acmella using DPPH assay / Hajera Sana*, A. Sabitha Rani and G.Sulakshana / Int.J.Curr.Microbiol.App.Sci (2014) 3(7) 219-223

(11) Spilanthes acmella ethanolic flower extract: LC-MS alkylamide profiling and its effects on sexual behavior in male rats. / Urban & Fischer Verlag 24 Jul. 2014 / The Free Library.

(12) Protective Effect of the Spilanthes acmella Extract Against the Genotoxic Damage Induced by Cyproterone Acetate in Cultured Human Peripheral Blood Lymphocytes / Yasir Hasan Siddique, Gulshan Ara, Mohammad Faisal and Mohammad Afzal / Global Journal of Pharmacology 5(3): 136-142, 2011

(13) Phytopesticidal effects of Spilanthes acmella (L.) Murr. leaves on three economically important lepidopteran insect pests / Manickam Pavunraj*, Kathirvelu Baskar, Sundaram Janarthanan, Munusamy Arumugam / Journal of Coastal Life Medicine 2014; 2(7): 549-554

(14) HIGH THERAPEUTIC POTENTIAL OF SPILANTHES ACMELLA: A REVIEW / Veda Prachayasittikul, Supaluk Prachayasittikul*,Somsak Ruchirawat, Virapong Prachayasittikul* / EXCLI Journal 2013;12:291-312 – ISSN 1611-2156

(15) Evaluation of antibacterial potential of medicinal plant Spilanthes acmella Murr. and its in vitro raised callus against resistant organisms especially those harbouring bla genes / Noor Jahan*, Razia Khatoon, Siraj Ahmad, Anwar Shahzad / Journal of Applied Pharmaceutical Science Vol. 3 (10), pp. 119-124, October, 2013 / DOI: 10.7324/JAPS.2013.31021

(16) Evaluation of the Laxative Effects of Methanolic Extract of Spilanthes acmella / DAS, MUSHUMI / EWU Institutional Repository

(17) Toxicity and electrophysiological effects of Spilanthes amella Murr. extracts on Periplaneta americana L. / Habsah A. Kadir, Muhamad B. Zakaria, Abdul A. Kechil andMoh D. S. Azirun / Pesticide Science
Volume 25, Issue 4, pages 329–335, 1989 / DOI: 10.1002/ps.2780250402

(18) Effect of Spilanthes acmella hydroethanolic extract activity on tumour cell actin cytoskeleton / Cristina Pacheco Soares, Valeria Rosseto Lemos, Ary Gomes da Silva, Renan Meyer Campoy, Carlos Augusto Priante da Silva, Renato Farina Menegon, Iuri Rojahn, Walderez Moreira Joaquim / Cell Biol Int 2014 Jan;38(1):131-5

(19) LARVICIDAL AND PUPICIDAL EFFECT OF SPILANTHES ACMELLA AND ANDROGRAPHIS PANICULATA ON THE MOSQUITO AEDES AEGYPTI / K. M. Remia* / International Journal of Institutional Pharmacy and Life Sciences 2(2): March-April 2012

(20) Bioactive N-isobutylamides from the ̄ower buds of Spilanthes acmella / Russel S. Ramsewak, Andrew J. Erickson, Muraleedharan G. Nair* / Phytochemistry 51 (1999) 729±732

– Root decoction used as purgative – 4 to 8 grams to a cup of water.
– Infusion used for itches and psoriasis.
– Decoction of plant used as diuretic and as solvent for vesical calculi.
– Leaf juice and bruised leaves applied to wounds and atonic ulcers.
– Whole plant used in treatment of dysentery and rheumatism.
– Leaves, mixed with Blumea balsamifera and Tamarindus indica, used to prepare aromatic baths for convalescents, rheumatics and pregnant women.
– Tops and decoction of roots used as vulnerary.
– Decoction of roots used as purgative.
– Flower heads, the most pungent of parts, chewed by Hindus to relieve toothache, as it produces redness of the gums and salivation.
– Flower heads used as hemostatic and analgesic.
– Tincture of flower heads used for toothache in lieu of tincture of pyrethrum.
– Used for inflammation of the periosteum of the jaws.
– In Old Calabar, used for toothaches.
– In South Africa, powdered leaf placed in carious tooth; rubbed on lips and gums for sore mouth in children.
– In Sri Lanka, flowers used for its diuretic activity.
– In the Cameroons, flowering heads are rubbed on the forehead for headaches. Also, combined with other plants, chewed and swallowed for snake bites and as local treatment for wounds.
– In Assam, used after childbirth.
– In Ayurvedic medicine, flower heads and roots are used in the treatment of scabies, psoriasis, scurvy, toothache, gum and throat infections; also used for stammering in children.

• Fish Poison: Among the Mundas of Chota Nagpur, crushed plants used a fish poison.
• Flavoring: Extract of flowers used as flavoring material for dentrifices and gum.

Study Findings
• Antiinflammatory / Analgesic: Study of aqueous extract of S. acmella in experimental animal models showed dose-dependent inhibition of paw edema and increased pain threshold indicating significant antiinflammatory and analgesic properties.
• Diuretic: Study of cold-water extract showed a marked increase in urine output, marked increase in urinary Na and K levels and reduction of urine osmolarity suggesting loop diuretic activity. It may also inhibit ADH release and/or action.
• Antiinflammatory / Spilanthol: Study has isolated spilanthol which has shown to have significant anti-inflammatory activity on lipopolysaccharide-activated murine macrophage model, partly from inactivation of NF-kappaB which negatively regulates production of proinflammatory mediators.
• Vasorelaxant / Antioxidant: Study showed SA extract exerts maximal vasorelaxation in a dose-dependent manner, although less than acetylcholine-induced NO vasorelaxation. Chloroform extract showed the highest vasorelaxation and antioxidant activity.
• Immunomodulatory / Antioxidant: Total ethanolic extract of leaves showed significant activation of macrophages and enhanced their function as compared to control, suggesting the herb as a potential natural drug for immunostimulant effect.
• Bioactive Compounds / Spilanthol: Study analyzing the active chemical compounds of S. acmella revealed the naturally occurring insecticide, spilanthol, in the mother plant, flower heads and in vitro plantlets. Antioxidants, butylated hydroxytoluene (BHT) and fatty acids (n-Hexadecanoic acid and tetradecanoic acid) were obtained from all the sample extracts.
• Spilanthol / Larvicidal: Study showed spilanthol to be a major constituent of ethanolic extract of flower heads, with potent ovicidal, larvicidal and pupicidal activity. It exhibited 100% mortality of eggs, larvae, and pupae of Anopheles culex and Aedes mosquito.
• Antioxidant: Study showed the methanolic extract of stem of SA to have the highest superoxide radical scavenging activity while leaves showed maximum DPPH scavenging activity.
• Bioactive Compounds / Spilanthol / Insecticidal: Study detected the naturally occurring insecticide, spilanthol, in the mother plant, flower heads, and in vitro plantlets. N-isobutyl-2E, 4Z, 8Z, 10E- dodecatetraenamide was also detected in in vitro plantlets of S. acmella. It is a potent mosquito larvicide with 100% mortality against third instar larvae of A. aegypti.
• Antimicrobial: Study of various extracts of leaves of Spilanthes acmella showed the ethyl acetate and methanol extracts with activity against bacterial strains of Klebsiella pneumoniae and the water and EAE with good activity against fungal strains of Rhizopus stolonifer and R. arrhigus.
• Diuretic / Antihypertensive: Leaf extracts were evaluated for diuretic activity in animals. The alcohol extract showed significant and marked increase in urine output, with a pattern of diuresis similar to that induced by furosemide. Results suggest a potential traditional use of the plant as diuretic in the treatment of hypertension.
• Analgesic / Fresh Flowers: Study evaluated the analgesic potential of fresh flowers as used by Sri Lankan traditional practitioners to treat toothache. Results showed a dose-dependent analgesic activity. The analgesic was rapid and of short duration, not blocked by naloxone. The activity was presumed mediated supra-spinally accompanied by sedation.
• Local Anesthetic / Antipyretic: Study evaluated an aqueous extract for local anesthetic activity by intracutaneous wheal in guinea pigs and plexus anesthesia in frogs, with xylocaine as standard drug in both models. Antipyretic activity was tested using yeast-induced pyrexia in rats, with aspirin as standard drug. Results showed significant anesthetic and antipyretic activities. Study evaluated the local anesthetic action of ethanol extract of S. acmella in guinea pigs and frogs’ sciatic nerves. Results showed S. acmella possessed local anesthetic activity.
• Bioactive Metabolites / Alkamides: Major isolates are lipophilic alkylamides or alkamides bearing different number of unsaturated hydrocarbons, such as spilanthol or affinin ((2E,6Z,8E)-N-isobutyl-2,6,8- decatrienamide) and amide derivatives. Alkamides are structurally related to animal endocannabinoids, highly active in the CNS. Anandamide (N-arachidonoyl-ethanolamine) is an endogenous cannabinoid cerebral neurotransmitter.
• Insecticidal Toxicity / Spilanthol / Plutella xylostella: Study showed the potential of S. acmella seed extract for insecticidal toxicity for the management of P. xylostella and other insects of agricultural importance.
• Antioxidant / Roots: Study of root extracts of Spilanthes acmella in in vitro DPPH assay showed radical scavenging activity with an IC50 of 16.3 µg/ml.
• Sexual Stimulant / Flowers / N-Alkylamide: Study evaluated ethanolic extracts of flowers and its effect on general mating patter, penile erection and serum hormone levels of normal male Wistar albino rats, compared with sildenafil citrate. The orally administered extract had a dose-dependent effect on mounting frequency, intromission frequency and ejaculation frequency, with a dose-dependent effect on FSH, LH, and serum testosterone levels. The effect might be attributable to N-alkylamide. Study lends support to the traditional use of S. acmella as a sexual stimulating agent.
• Modulation of Genotoxic Damage Induced by Cyproterone Acetate: Study showed an extract of S. acmella modulated the genotoxic damage induced by cyproterone acetate in cultured human peripheral blood lymphocytes.
• Phytopesticidal / Leaves: Study evaluated the antifeedant and larvicidal activities of various extracts of S. acmella leaves against Earias vitella, Helicoverpa armigera and Spodoptera litura. The leaves extract exhibited larvicidal activity, with maximum mortality in the dichloromethane extract. Results suggest a potential for the development of an eco-friendly pest control agent.
• Antibacterial / bla Genes: An alcoholic extract of plant and its callus showed good antibacterial activity against gram positive and gram negative bacterial and also effectively controlled the growth of most resistant bacteria harboring bla genes.
• Laxative / bla Genes: Study evaluated a methanolic extract of Spilanthes acmella for its laxative effect in animal models. Crude extract showed laxative properties, increasing the total number of feces.
• Insecticidal / Anti-Cockroach: Study evaluated the potential insecticidal activity of Spilanthes acmella. Extracts were shown to be toxic against American cockroach, Periplaneta americana. The active component isolated was identified as N-isobutyl-2,6,8-decatrienamide (spilanthol). Spilanthol was more toxic than carbaryl, bioresmethrin, and lindane. Electrophysiological studies showed immediate hyperexcitation followed by complete inhibition of cockroach cercal nerve activity.
• Anti-Tumor / Cytotoxicity: Study evaluated the cytotoxicity of a hydroalcoholic extract of inflorescence of S. acmella and its effects on the cytoskeleton of tumour cells. Results showed high cytotoxicity—the actin cytoskeleton arrangement of HEp2 cells showed depolymerization of the filaments, causing loss of morphology and compromised cell adhesion.
• Larvicidal and Pupicidal: Study evaluated the effect of two plant extracts (Spilanthes acmella and Andrographis paniculata) on different larval instar and pupae of mosquito vector Aedes aegypti. S. acmella flower extract showed more effect than A. paniculata. Results suggest plants as alternative insecticidal to synthetic pesticides for vector control.
• Hepatoprotective / CCl4-Induced Liver Toxicity: Study evaluated various extracts of S. acmella for hepatoprotective activity in CCl4-induced liver toxicity in rats. Results showed concentration dependent protection in the reduction of enzymes. The methanol extract showed the best activity.
• Bioactive N-isobutylamides / Flower Buds / Mosquitocidal and Larvicidal: A hexane extract of dried flower buds yielded three N-isobutyl amides: spilanthol, undeca-2E,7Z,9E- trienoic acid isobutylamide and undeca-2E-en-8,10-diynoic acid isobutylamide. All were active against Aedes aegypti and Helicoverpa zea.